
Intricate Natural Language Processing made easier with Symbolic
Computation software: Pattern Matching lessons from Bracmat

Bart Jongejan
CST-University of Copenhagen

Njalsgade 140-142
DK-2300 Copenhagen S
bartj@hum.ku.dk

Abstract

The recognition of patterns in complex
data is a basic need in Natural Language
Processing and often delegated to existing
libraries and toolkits. Nevertheless some
programming is normally needed as well.
To demonstrate the usefulness of program-
ming languages that make advanced pat-
tern matching easy, we present such a lan-
guage, Bracmat, which has already been
inspiring and successful in various NLP
tasks, from the validation of large text cor-
pora to automatic chaining of NLP tools.

1 Introduction

We will present here a specially devised language
in which the linguist can conveniently tell the com-
puter to do things that he wants it to do (Yngve,
1958).

COMIT, Victor H. Yngve’s brainchild, was an
early pattern matching programming language that
operated on a series of constituents, each consist-
ing of a symbol or a symbol and one or more sub-
scripts. The symbols could be words or annota-
tions. A notable descendant of COMIT was the
SNOBOL family (Farber et al., 1964; Griswold
et al., 1971). Pattern matching in SNOBOL4 was
handicapped by high time complexity and the con-
ceptually unsatisfactory split between a ‘basic lan-
guage L’ and a ‘pattern language P’ (Griswold
and Hanson, 1980). Icon was designed to sur-
mount those problems. Icon had backtracking and
other advanced programming constructs, but it did
away with SNOBOL4’s ‘pattern language P’.

Even today, very few programming languages
have native support for advanced pattern matching
other than regular expressions for strings. NLP
that falls outside the realm of available toolkits
is now commonly done with general purpose pro-
gramming languages. A search for ‘programming

languages for computational linguistics’ or ‘pro-
gramming languages for Natural Language Pro-
cessing’ using the DuckDuckGo search machine
produces, roughly in order of first appearance:
Perl, Java, Ruby, Lisp, Prolog, Haskell, Mer-
cury, Python, R, Scala, Clojure, Go, C, C++, and
C#. A similar list for the search string ‘pro-
gramming languages for physicists’ mentions sev-
eral Masomething languages that have native sup-
port for the mathematical objects physicists work
with and that are not for general purposes: For-
tran, C++, Mathematica, Matlab, Excel, IDL,
Python, Java, Scala, Haskell, LabView, Visual Ba-
sic, C, Lisp, Ada, Scheme, Perl, Octave, Math-
cad, Nastran, Fortress, OCaml, F#, Scilab, Sage,
Rlab, FreeMat, JMathLib, AMPERE, Maple, Pas-
cal, and PL/I. Ironically, well-established pack-
ages like Mathematica and Maple owe part of their
success to pattern matching facilities for manipu-
lating symbolic expressions, continuing a tradition
that started with the early (1963) computer algebra
system Schoonschip (Veltman, 2000)1.

The aim of this paper is to reawaken the crav-
ing for programming languages that have powerful
pattern matching facilities for the tree structures
that NLP tasks abound with. We will do so by pre-
senting an example of such a language, Bracmat
(3), its limitations (4), and some of its successes
(5). But first (2) we have to explain what ‘power-
ful’ means.

2 Pattern matching in degrees

Many functional languages, such as Haskell, ML,
and Scala, have a pattern matching mechanism for
tree structured data that inspects the head of the
tree (top node or root) and adjacent tree nodes.
Each matched node can be bound to a pattern vari-
able. A complete sub-tree can be bound to a single
pattern variable or matched by a wild card ‘ ’. The

1Online available at http://www.nobelprize.org/

matching algorithm iterates over a set of patterns
until a matching pattern is found. Each pattern is
part of a ‘case’ that defines the action to take place
after a match has occurred.

Term rewriting systems such as XQuery, XSLT,
Trafola (Heckmann, 1988), Elan (Borovansky et
al., 1997), Maude (Clavel et al., 1998), Strat-
ego (Visser, 2001), Tom (Moreau et al., 2003), and
Tregex+Tsurgeon (Levy and Andrew, 2006) scan
a tree structure, searching for terms that match
a given rule pattern. When a matching term is
found, the transformation part of the rule is ap-
plied to that term. The pattern matching mecha-
nism itself is not fundamentally different from that
in functional languages. The tree scanning mecha-
nism is not part of the pattern matching algorithm,
but defined by some tree traversal strategy.

Some pattern matching languages go further
and look for multiple matches of the same pat-
tern to the same subject by iterating over all pos-
sible ways the subject structure can be partitioned.
These are associative and associative commutative
(AC) pattern matching languages (Slagle, 1974;
Hullot, 1979), with or without neutral elements.
In this group we find computer algebra systems,
some tools for program analysis such as Maude,
Tom and Rascal (Klint et al., 2009) and a few
less specialised programming languages, such as
Egison (Egi, 2014) and Bracmat, but not any lan-
guages with a user basis in the NLP community.

The formal legitimation of partitioning a list in
multiple ways is that the binary operators that link
the list elements can be associative and have a neu-
tral element. Associative binary operators ◦, for
example the algebraic + and ∗ operators and con-
catenation, have the following property:

x ◦ y ◦ z = (x) ◦ (y ◦ z) = (x ◦ y) ◦ (z)

Associative pattern matching takes account of the
associativity of the binary operator connecting list
elements by tentatively partitioning the list in as
many parts as there are pattern components and
by repeating this until all partitions have been tried
or until each pattern component matches a corre-
sponding part of the list.

A binary operator with a neutral element makes
associative pattern matching even more versatile.
A neutral or identity element e with respect to a
binary operator ◦ has the property that

e ◦ x = x = x ◦ e

With respect to the binary operators for addition,
multiplication and concatenation, the neutral ele-
ments are 0, 1 and the empty string ‘’, respectively.

If a pattern with M components has N compo-
nents that can match a neutral element, then the
pattern matching algorithm must not only inves-
tigate all partitions with M parts, but also with
M−1, M−2, . . .M−N parts. For example, if the
first and the last component in a pattern with three
components can accept neutral elements, then the
pattern matcher, considering partitions with 3, 2 or
1 parts, has to try the following partitions of a list
with only two elements x and y:

(e) ◦ (x) ◦ (y)
(e) ◦ (x ◦ y) ◦ (e)
(x) ◦ (y) ◦ (e)

The combination of tree pattern matching and
associative pattern matching with neutral elements
is very powerful and useful, as we will show here.

3 Bracmat

Bracmat is a symbolic computation program, orig-
inally conceived with the aim of performing long
chains of algebraic manipulations without human
supervision or interaction with intermediary re-
sults. Later additions made it possible to use Brac-
mat for analysis and manipulation of a wider class
of complex data, maximally utilising the high level
programming features that already were in place to
handle algebraic expressions.

Bracmat must evaluate expressions to a form
that is normalised and that it cannot further sim-
plify, in order to avoid that computations in later
steps become inextricably complicated and per-
haps even impossible to perform. Canonisation
of expressions is to some degree achieved by the
hard coded expression evaluator, which sorts and
merges sums of terms and products of factors2 and
applies basic simplification rules to pairs of juxta-
posed elements:

(b+ a) + (a+−b) = (a+ b) + (a+−b) =
a+ (a+ (b+−b)) = 2a+ 0 = 2a

Because concatenation is not commutative, con-
catenated lists are not merged, but flattened:

(The sun) (is red) = The (sun (is red))
2This is Associative Commutative (AC) normalisation.

Bracmat’s expression evaluator normalises trees
constructed with addition, multiplication and con-
catenation operators to right descending trees
without neutral elements.

The expression evaluator cannot simplify an ex-
pression if it doesn’t create or find pairs of ele-
ments that can be combined, such as in this case:

b+ x+ by + xy

1 + y

A general algorithm that can simplify this expres-
sion is hard to implement, test and debug if di-
rectly written in C, the language in which Bracmat
is implemented. Therefore Bracmat is a program-
ming language in its own right, with a relatively
simple and thoroughly testable pattern matching
facility as its most important high level language
construct. Associative pattern matching with neu-
tral elements enables Bracmat to reason about an
expression in its entirety.

Bracmat lacks commutative pattern matching,
but this should not be seen as a shortcoming. Be-
cause Bracmat normalises expressions before sub-
jecting them to pattern matching, patterns should
always mimic normalised expressions. For in-
stance, a pattern component to capture a numerical
factor must be the first factor in a product of pat-
tern components, as this is the only position where
numerical factors can occur after normalisation.

Bracmat is a homoiconic language like Lisp:
there is no distinction between data and program
instructions. Bracmat expressions are immutable3

binary trees built from binary operators4, leaf
nodes (or ‘atoms’), which are strings, and pre-
fixes5 attached to those leaf nodes or binary oper-
ators. The illusion of expression evolution is cre-
ated by disassembling existing expressions and as-
sembling new ones. First, by using pattern match-
ing, all parts of the expression that should be
reused are retrieved. Then, a new expression is
composed from the retrieved parts, together with
new pieces, as shown in this Bracmat example:

my dogs run:?D dogs ?V
& do !D cats !V too "?"

This expression evaluates to:

do my cats run too ?

3Exception: the rhs operand of an = operator is replacable.
4= . , | & : space + * ˆ \L \D ’ $
5[˜ / # < > % @ ‘ ? ! !! -

The binary operator : is the pattern matching
operator. Its left operand is the subject of the
operation, a list of three symbols (string tokens)
linked by two space (concatenation) operators6.
The right operand ?D dogs ?V is a pattern with
three components linked with space operators.

Pattern components consisting of a symbol
without prefixes (dogs and the literal question
mark "?") match only that symbol. Pattern com-
ponents with ?-prefix can capture values. The pre-
fixed expressions ?D and ?V are pattern variables.
Each time there is a match the captured value is
bound to the pattern variable. No assignment takes
place if the prefixed expression is an empty string.

The second line of the expression starts with &,
meaning ‘and then’. This operator, and likewise
the ‘or else’ operator |, have short-cicuit seman-
tics. When the left operand of a & operator (the
first line in this case) succeeds, the right operand
(the remainder of the second line) is evaluated and
returned. If the left operand fails, the whole ex-
pression fails.

The expressions with !-prefix, !D and !V, are
the same pattern variables as ?D and ?V, but in
a different role: they produce the values that are
bound to those variables.

A pattern is said to be non-linear if a pattern
variable is capturing and later during the same pat-
tern matching operation producing. The follow-
ing example shows how we find two inventions
i1 and i2 in the same year yr in a list of six
(name.year) pairs using a non-linear pattern. The
dot operator is a binary operator that is the cement
in many fixed data structures. Observe that a soli-
tary ? is a wild card.

((penicillin.1928)
(sonar.1906)
(teabag.1904)
(telephone.1876)
(triode.1906)
(zeppelin.1900)

: ? (?i1.?yr) ? (?i2.!yr) ?
& !yr saw !i1 and !i2
)

Evaluation of this expression returns:

1906 saw sonar and triode
6Any number of white space characters between two sub-

expressions corresponds to one space operator. The white
spaces in x + y are not white space operators, because + is
not an expression.

The pattern component !yr always evaluates to
the latest value captured by the ?yr pattern com-
ponent.

Without going into the details of factorisation,
an outline of a solution to the factorisation task
discussed earlier looks like this expression:

(fct = local vars . body)
& fct$((1+y)ˆ-1*(b+x+b*y+x*y))

The first line of the expression declares and de-
fines a recursive function fct that visits and fac-
torises all sum nodes. The = operator assigns its
right operand to its left operand without first eval-
uating the right operand. Local variables are de-
clared to the left of the dot operator, while the right
operand is the function body, where pattern match-
ing and expression rewriting takes place. The ac-
tual argument expression to a function (always
called arg) needs no declaration.

When Bracmat is asked to evaluate the expres-
sion, it first defines the function fct and then ap-
plies, using the function application operator $,
this function to the expression to factorise, return-
ing the expression

(1+y)ˆ-1*(1+y)*(b+x)

Because Bracmat’s expression evaluator inex-
orably combines the factors with the common base
(1+y), this immediately becomes b+x.

Bracmat can not only apply patterns to tree
structures, but also to a single leaf node, which
always is a string of zero or more characters. Syn-
tactically there is almost no difference between
string pattern matching and tree pattern matching
in a list with space operators:

c l a s s:? a s ? { tree PM }
@(class:? a s ?) {string PM}

The @ (‘atom’) prefix is attached to the : op-
erator, which heads the parenthesised expression.
It tells Bracmat to use string pattern matching in-
stead of the default tree pattern matching.

4 Limitations and solutions

Some of those who stood at the cradle of
SNOBOL4 mention eight reasons to do away with
pattern matching (Griswold and Hanson, 1980).
Of these, the following issues are relevant in the
case of Bracmat:

The complexity of the pattern matching algo-
rithm. Pattern optimisation makes it hard for a

programmer to come to grips with the complex-
ity of SNOBOL4 patterns. Bracmat patterns are
not compiled or optimised and fairly predictable,
but some experimentation is sometimes necessary.

Unnecessary backtracking and lack of control
over the pattern matching algorithm. An example
of this is the following:

(p = | x !p (x|y))
& x x x x x x x y x x : !p

The pattern pmatches the subject if either the sub-
ject is an empty string or the subject starts with x,
followed by a sequence that matches the value of
p, followed by a single x or y. In other words,
pattern p is recursive and matches lists of N xs
followed by N x or ys, N ≥ 0.

The pattern p is terrible inefficient, because the
pattern component (x|y) does not find a match
before the much more complex pattern compo-
nent !p has matched the 2(N − 1) elements be-
tween the first and the last element. Bracmat pat-
terns are non-greedy, so !p is first matched against
the empty string, then with one x, two xs, three
xs, . . . , forced by backtracking when either !p
fails (every second time) or the sub-pattern (x|y)
fails. This process repeats at each level of recur-
sive invocation of the pattern !p.

To write an efficient pattern, the programmer
should economise with backtracking and recur-
sion, for example by postponing backtracking and
recursion until the easiest and cheapest compo-
nents are matched. Reformulated in this vein, the
problem is: make a pattern that either matches the
empty string or that matches a subject that begins
with an x and that ends with an x or a y, and that
also matches the list between the first and the last
elements:

(q = | x ?V (x|y) & !V:!q)
& x x x x x x x y x x : !q

Because Bracmat does not optimise patterns, it is
the programmer’s responsibility to write procedu-
rally efficient patterns.

Difficulties with program structuring, especially
the necessity for using side effects. In Bracmat,
side effects cannot be eliminated, but they can be
restricted to locally declared variables inside func-
tions.

5 Examples

5.1 Medical question answering
The ESICT platform (Henriksen et al., 2014) was
aimed at answering questions from Danish dia-
betes patients. Questions were tokenised, lemma-
tised, syntactically parsed, analysed for relations
between medical terms and then coded as queries
to the SNOMED CT terminology bank. Bracmat
was used for lemmatisation and for relation extrac-
tion, using hand-made syntactic patterns. It was
not feasible to use statistical methods due to the
paucity of example questions.

5.2 Multimodal communication in a virtual
world

The Danish Staging project has brought forth a 3D
virtual world inhabited by a farmer agent and his
animals. The user, through an avatar, can com-
municate with the farmer using natural speech and
hand movements. The functionality that lets the
farmer keep track of the dialogue and that gener-
ates appropriate agent actions and speech acts was
written in Bracmat (Paggio and Jongejan, 2005).
A rapid development of this module was made
possible due to the ease of saving, inspecting, edit-
ing and hot deploying Bracmat script files.

This application is characterised by a number
of data structures that together embody static and
dynamic world knowledge: the scoreboard that
keeps track of salient objects, the evolving dia-
logue tree, and a table that lists which types of
response to expect given some dialogue initiative.
Incompatible responses push the current initiative
on a stack and initiate a sub-dialogue. When the
sub-dialogue has been completed, the initiative is
popped from the stack.

Changes in all these data can be traced in real
time.

5.3 Rewriting HTML pages
Bracmat was used to parse, repair, modernise and
validate about 1000 manually written HTML files.
The files had many syntax errors and deprecated
elements. A Bracmat script repaired broken el-
ements, rewrote deprecated elements to allowed
elements, removed redundant elements, and re-
structured the HTML tree if elements occurred in
places where they were not allowed. The result
was validated with W3C’s XHTML validator. A
report was generated of the whole process so it
was possible to see which files still had issues.

Only a few files with exceptional errors had to be
corrected by hand. As a simple example, let us as-
sume that we want to change the HTML attribute

clear="XX"

to

style="clear:XX;"

where XX is an unknown value. It is possible
that the style attribute already exists and even
that it already has a clear:XX; value.

In the following Bracmat code snip-
pet, !attrs evaluates to the list of
(attribute.value) pairs of the ele-
ment currently in focus. The variables First and
Last match an capture any attributes preceding
or trailing the clear attribute.

If a style attribute with a clear:XX; value
is already present, nothing will happen except that
the HTML attribute clear:XX; is removed. If a
style attribute exists, but without a clear:XX;
value, the existing value W of the style attribute
is concatenated with that new value using the
the str function. Otherwise a new style at-
tribute value is created. The original clear at-
tribute is not returned in the new value of attrs.
The whole expression fails if there is no HTML
clear attribute.

!attrs:?First (clear.?XX) ?Last
& str$("clear:" !XX ";"):?newVal
& (!First !Last

: ?pre (style.?W) ?post
& !pre

(style
. @(!W:? !newVal ?)

| str$(!W !newVal)
)
!post

| !First (style.!newVal) !Last
)

: ?attrs

In the actual program the attribute rewriting code
is put in a generic function.

5.4 Dynamic programming
The CLARIN-DK infrastructure has a workflow
service that assists users with analysing and anno-
tating language resources, even if they do not have
much knowledge of NLP tools (Jongejan, 2013).
Unlike other language resource tool frameworks
(Ogrodniczuk and Przepiórkowski, 2010), which

assist the user in selecting NLP tools as work-
flow components, the CLARIN-DK toolbox just
asks the user to specify the desired end result. It
then presents a list of suitable workflows and runs
the one the user selects. An empty list of work-
flows indicates that no solution, man made nor
machine made, exists, given the registered tools
in CLARIN-DK.

The workflow service, employing top down, re-
cursive dynamic programming with memoisation,
computes workflows that, starting from the pro-
vided input, satisfy the user’s goal. It does so by
trying to find the NLP tools in its registry that can
produce output as stated in the goal. For each tool
found, the service recursively tries to satisfy the
input requirements of that tool, until those input
requirements are met by the input or until no tools
are found that satisfy the input constraints or un-
til a recursion depth limit (currently set at 20) is
reached. After finding a solution, the workflow
planner backtracks until a choice point to try an
alternative path, which may lead to another viable
workflow. This is repeated until the workflow ser-
vice has found all (perhaps zero) workflows.

When describing their goal, users are advised
to specify only features that matter to them, be-
cause a too detailed specification can lead to an
empty solution set. There are currently just four
features (type of content, presentation, format and
language) that can be specified. Features can have
values independent of each other. For example, a
musical or literary work or an annotation can be
fixed in almost any format, e.g., LaTeX, GIF page
images or a video stream.

Computer algebra functionality is critical for
the success of the workflow service. Many work-
flows are not linear sequences of tools, but are bet-
ter described as directed acyclic graphs, because
many NLP tools take two or more inputs, for ex-
ample a text and one or more annotation layers to
that text. If a tool has T independent inputs that
need to be generated in earlier steps, then there are
T ! ways to arrange the steps generating those in-
puts in a job queue. All these arrangements are
equivalent. The workflow service, employing the
automatic transformation of polynomials to nor-
mal form, designates one of the T ! queue orders
as the canonical order. This is extremely impor-
tant, because the (in-)equality of two workflows
can only be established if both are normalised to
unique canonical forms.

Many tools allow some flexibility in the input
given and in the output produced. For example, a
tool may be able to handle a number of languages,
or it can take a number of different file formats.
Or it can do both. Some tools can even (perhaps
as an option) take several combinations of types
of input. For example a lemmatiser may be able to
produce more accurate results if the word classes
of the words are already known. Such alternatives
are expressed as a sum of symbols, where the +
symbol means ‘OR’. For example, if a tool can
take either Chinese, English or French input and
produces output in the same language as the input,
then we can express the tool’s language feature as

(language
, (en.en)+(fr.fr)+(zh.zh)
)

Likewise, the content type feature of the lemma-
tiser that optionally can take Part-of-Speech (PoS)
tags in addition to tokens, can be specified by us-
ing the * symbol to express an ‘AND’ relation:

(contentType
, (tok+pos*tok.lem)
)

The symbols + and * are chosen to fulfil the
roles of OR and AND because they obey the same
distributive law as these logical operators. An ad-
ditional benefit of using these mathematical op-
erators is that they are commutative and associa-
tive, making it straightforward to normalise ex-
pressions that use these operators.

Although the use of mathematical operators to
build data structures may look strange at first,
there is a close analogy with functional languages.
The multiplication operator creates product types
(synonyms: tuples, records), while a sum opera-
tor creates sum types (synonyms: unions, variant
types). These concepts are well known in func-
tional languages. While Bracmat does not itself
have algebraic data types, it is at least very natural
for a Bracmat program to reason about algebraic
data types!

Another computer algebra feature is used to
condense and simplify the metadata of CLARIN-
DK tools. A tool that supports 12 languages and
three input file formats has 12 x 3 = 36 different
input combinations. It would be convenient if we
could just keep talking of 12 languages and three
input file formats. To be able to do this, the meta-
data must be kept factorised and presented to the

user as mutually independent lists of values. For a
minor tool extension the registrant of the tool only
needs to open the registration form that shows the
current metadata and to add the new value to the
appropriate feature. For bigger changes, for exam-
ple the addition of a new language that requires an
exceptional file format, the registrant can choose
to fill out a registration form from scratch. The
tool service then adds the new metadata to the ex-
isting metadata and re-factors all metadata.

5.5 Named Entity Normalisation (NEN)

A Bracmat program is part of an automated mod-
ule that anonymises court orders for the Danish
company Schultz Information7. First, a Perl pro-
gram tokenises the XML input and recognises
named entities (NEs), such as names of legal en-
tities and registration numbers. Next, a Bracmat
program fuzzy matches all words in the found NEs
with all words in the text. This step increases the
recall to almost 100 %, somewhat at the expense
of precision. In following steps the NE candidates
are pruned using several heuristics, until all ambi-
guity is removed. In the last step the Bracmat pro-
gram de-identifies all NEs and replaces each NE
with a referent ID, strictly adhering to Schultz’s
guidelines for the encoding of anonymous referent
identifiers: person1, person2, company1,
(account number) ...876, etc. .

The ease with which test documents could be
saved at each stage of the NEN process, made it
easy to see the effects of each step. This made it
possible to develop the complex heuristics within
a relatively short time.

5.6 Corpus validation

Bracmat has been used to assist manual and au-
tomatic validation of a number of Dutch corpora
(MWE, D-COI, DPC, Lassi, and SoNaR) (van
Noord et al., 2013). Each validation consisted
of varying tasks, such as sampling, reporting and
checking XML well-formedness, PoS-tag usage,
and agreement between documentation and anno-
tation practice. The process of understanding a
single validation task and simultaneously writing,
testing and finally running a Bracmat script for do-
ing the task took between an hour and a week.

Bracmat can natively read XML, SGML,
HTML and JSON into Bracmat expressions.
Reading mark-up is robust against non-

7http://progresso.dk/en/schultz-anonymisation/

wellformedness and schema related errors,
making it possible to localise and describe each
error using pattern matching.

Here is one line8 from an informal document
describing validation criteria, which turned out
never to have been enforced. The validation cri-
teria are written directly in a file that resembles
the files to validate:

<CollectionCode>Batch/SoNaR/
n1;cc;src;n2</CollectionCode>
n1 = 1-7, cc = NL or BE, src
= A,B,C or D, n2 is 2 digits

Using Bracmat’s option to read XML, the line
was transformed to this Bracmat code:

(CollectionCode
.,"Batch/SoNaR/n1;cc;src;n2"
)
" n1 = 1-7, cc = NL or BE, src
= A,B,C or D, n2 is 2 digits "

This line was edited to become a validating pat-
tern that issued an error message upon failure:

(CollectionCode
.

, @(?
: "Batch/SoNaR/"

(˜<1:˜>7)
";"
(NL|BE)
";"
(A|B|C|D)
";"
#%@
#%@

)
| {... error message}

)

Inside the tree pattern for a CollectionCode
element resides a string pattern. Where we nor-
mally expect the subject string to be, we find a
wildcard ?, because the left operand of the string
match operator doubles as a pattern component in
the outer tree pattern.

The pattern components #%@ match exactly
one decimal digit each. The prefix # (‘number’)
matches any rational number, the % (‘≥ 1’) pre-
fix matches one or more non-neutral elements. Fi-
nally, the @ (‘atom’, ‘0 or 1’) prefix matches one

8The line, which is more elaborate in the original docu-
ment, is adapted for the sake of clarity of the example.

neutral or non-neutral element. As in a wild card
expression ?, the prefixed string is empty in #%@.

Interestingly, a small part of the corpus did in
fact conform to the informal specification.

5.7 Expression embedding in patterns
A powerful feature is that inside patterns, Bracmat
gives full access to the language. The & operator
can be used to decorate a pattern component with
an expression that is evaluated after each match of
that component.

The following example finds and sorts the
strings that occur twice in the subject:
(0:?S
& (I blink and you smile

as I see that you see me
: ? %@?x ? (!x &!x+!S:?S&˜) ?

| !S
)

)

Let us dissect this example. The non-linear pattern

? %@?x ? !x ?

matches if a string, captured by %@?x, occurs
twice in the subject. The !x component in this
pattern is decorated with the expression

!x + !S : ?S & ˜

This expression adds the found string to the ac-
cumulator variable S and then fails due to the al-
ways failing expression ˜. That forces the pattern
matcher to backtrack and try to find other candi-
dates. Finally the accumulated value bound to S is
returned: I+see+you.

5.8 Projects inspired by Bracmat
Iconclass (van den Berg et al., 1994) is a classi-
fication system designed for art and iconography.
The first finished version existed only in paper for-
mat (van de Waal et al., 1985). Its intricate hierar-
chical data structure posed insurmountable prob-
lems during the first attempts at computerisation
based on database software. To test a radically dif-
ferent approach, a prototype of the first working
IconClass browser was created in Bracmat. The
data structure of the first production version in C
carried the clear traces of Bracmat and survived
for many years.

The handling of morphological changes to pre-
fixes, infixes and suffixes by the lemmatiser de-
scribed by Jongejan and Dalianis (2009) was men-
tally prototyped by experiences with Bracmat.

6 Bracmat in practice

Bracmat is freely available at GitHub and runs on
every 32 or 64 bit platform for which a standard
C compiler is available. To modern standards, its
memory footprint is very small.

Installing and running Bracmat is uncompli-
cated. If started without command line argu-
ments, Bracmat starts in interactive mode and runs
a REPL (Read-Evaluate-Print Loop).

Correct indentation of Bracmat code is very im-
portant for good readability, but is of no impor-
tance for the Bracmat interpreter. It is best to not
spend time on manual indentation, but let Bracmat
take care of that and to visually check the indented
listing. Many programming errors stand out by
code being indented in unexpected ways.

Bracmat listings have a lay-out that keeps the
text within about 80 columns. Most code exam-
ples in this paper are produced by using the lst
function.

7 Conclusion

Pattern matching is a programming language con-
struct that has been invented many times and that
has died a few times as well. The reasons for its
demise are not always clear, but in at least one doc-
umented case, bad or unpredictable performance
was the culprit. Another reason for the lack of suc-
cess may be that the advanced languages that sup-
port associative (perhaps even commutative) pat-
tern matching with neutral elements are developed
for small audiences and can have a steep learning
curve for outsiders. It may be the case that tools
for program optimisation can also be used in the
context of NLP, but who wants to be the first one
to try and perhaps fail?

What is needed is a programming language for
NLP with pattern matching as a first class pro-
gramming construct, and not as a ‘pattern lan-
guage P’ as a guest in a ‘basic language L’. This
is because, as we have seen in some of the exam-
ples, access to the full language is useful even in
the midst of a pattern matching operation. Asso-
ciative pattern matching with neutral elements and
the corresponding normalisation (flattening and
neutral element removal) are already well known
from string pattern matching, but should also be
available when working with structured data.

Bracmat has been successfully employed in sev-
eral real life applications in the field of NLP, prov-
ing the merits of such powerful pattern matching.

References
Peter Borovansky, Claude Kirchner, Hélène Kirchner,

Pierre-Etienne Moreau, and Marian Vittek. 1997.
Elan: A logical framework based on computational
systems. Elsevier.

M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-
Oliet, J. Meseguer, and J. Quesada. 1998. Maude as
a metalanguage. In In 2nd International Workshop
on Rewriting Logic and its Applications (WRLA’98),
volume 15 of Electronic Notes in Theoretical Com-
puter Science. Elsevier.

Satoshi Egi. 2014. Non-linear pattern-matching
against unfree data types with lexical scoping.
CoRR, abs/1407.0729.

D. J. Farber, R. E. Griswold, and I. P. Polonsky. 1964.
Snobol , a string manipulation language. J. ACM,
11(1):21–30, January.

Ralph E. Griswold and David R. Hanson. 1980. An al-
ternative to the use of patterns in string processing.
In Coalgebraic Methods in Computer Science, Elec-
tronic Notes in Theoretical Computer Science, pages
153–172.

R.E. Griswold, J.F. Poage, and I.P. Polonsky. 1971.
The SNOBOL 4 programming language. Automatic
Computation Series. Prentice-Hall.

Reinhold Heckmann. 1988. A functional language for
the specification of complex tree transformations.
In H. Ganzinger, editor, ESOP ’88, volume 300 of
Lecture Notes in Computer Science, pages 175–190.
Springer Berlin Heidelberg.

Lina Henriksen, Anders Johannsen, Bart Jongejan,
Bente Maegaard, and Jürgen Wedekind. 2014.
Worlds apart–ontological knowledge in question
answering for patients. Proceedings of the
Fourth Workshop on Building and Evaluating Re-
sources for Health and Biomedical Text Processing
BioTxtM2014, pages 76–83, May.

J. M. Hullot. 1979. Associative commutative pattern
matching. In Proceedings of the 6th International
Joint Conference on Artificial Intelligence - Volume
1, IJCAI’79, pages 406–412, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Bart Jongejan and Hercules Dalianis. 2009. Automatic
training of lemmatization rules that handle morpho-
logical changes in pre-, in- and suffixes alike. In
Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Pro-
cessing of the AFNLP, pages 145–153. Association
for Computational Linguistics.

Bart Jongejan. 2013. Workflow management in
CLARIN-DK. In Proceedings of the workshop on
Nordic language research infrastructure at NODAL-
IDA 2013, number 20 in NEALT Proceedings Se-
ries, pages 11–20. Northern European Association
for Language Technology (NEALT), May.

Paul Klint, Tijs van der Storm, and Jurgen J. Vinju.
2009. RASCAL: A domain specific language for
source code analysis and manipulation. In Ninth
IEEE International Working Conference on Source
Code Analysis and Manipulation, SCAM 2009, Ed-
monton, Alberta, Canada, September 20-21, 2009,
pages 168–177.

Roger Levy and Galen Andrew. 2006. Tregex and
Tsurgeon: tools for querying and manipulating tree
data structures. In In 5th International Conference
on Language Resources and Evaluation.

Pierre-Etienne Moreau, Christophe Ringeissen, and
Marian Vittek. 2003. A pattern matching compiler
for multiple target languages. In 12th Conference
on Compiler Construction, Warsaw (Poland), vol-
ume 2622 of LNCS, pages 61–76. Springer.

Maciej Ogrodniczuk and Adam Przepiórkowski. 2010.
Linguistic processing chains as web services: Initial
linguistic considerations. Proceedings of the Work-
shop on Web Services and Processing Pipelines in
HLT: Tool Evaluation, LR Production and Valida-
tion (WSPP 2010) at the Language Resources and
Evaluation Conference (LREC 2010), pages 1–7.

Patrizia Paggio and Bart Jongejan. 2005. Multimodal
communication in virtual environments. In Oliviero
Stock and Massimo Zancanaro, editors, Multimodal
Intelligent Information Presentation, volume 27 of
Text, Speech and Language Technology, pages 27–
45. Springer Netherlands.

James R. Slagle. 1974. Automated theorem-proving
for theories with simplifiers commutativity, and as-
sociativity. J. ACM, 21(4):622–642, October.

H. van de Waal, L.D. Couprie, and E. Tholen. 1985.
Iconclass: an iconographic classification system.
North-Holland Pub. Co.

Jörgen van den Berg, Hans Brandhorst, and Peter van
Huisstede. 1994. Iconographic thesaurus: A key
to subject retrieval in pictorial information systems.
In Alexander Tzonisian White, editor, Automation
Based Creative Design - Research and Perspectives,
pages 265 – 279. Elsevier, Oxford.

Gertjan van Noord, Gosse Bouma, Frank Van Eynde,
Daniël de Kok, Jelmer van der Linde, Ineke Schuur-
man, Erik Tjong Kim Sang, and Vincent Vandeghin-
ste. 2013. Large scale syntactic annotation of writ-
ten dutch: Lassy. In Peter Spyns and Jan Odijk, edi-
tors, Essential Speech and Language Technology for
Dutch Results by the STEVIN-programme. Springer.

Martinus J. G. Veltman. 2000. From weak interac-
tions to gravitation. International Journal of Mod-
ern Physics A, 15(29):4557–4573.

Eelco Visser. 2001. Stratego: A language for pro-
gram transformation based on rewriting strategies.
System description of Stratego 0.5. In A. Mid-
deldorp, editor, Rewriting Techniques and Applica-
tions (RTA’01), volume 2051 of Lecture Notes in

Computer Science, pages 357–361. Springer-Verlag,
May.

Victor H. Yngve. 1958. A programming language
for mechanical translation. Mechanical Translation,
5(1):25–41, July.

